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Abstract. This paper introduces a framework for representing versatile 
temporal relationships between events and their effects. The framework is 
based on a simple time model which characterizes each time element as a 
subset of the set of real numbers and allows expression of both absolute time 
values and relative temporal relations. The formalism presented here formally 
specifies the so-called most general temporal constraint (GTC), which 
guarantees the common-sense assertion that “the beginning of the effect cannot 
precede the beginning of the cause”. It is shown that there are in fact 8 possible 
causal relationships which satisfy GTC, including cases where, on the one 
hand, effects start simultaneously with, during, immediately after, or some time 
after their causes, and on the other hand, events end before, simultaneously 
with, or after their causes. The causal relationships characterized in this paper 
are versatile enough to subsume those representatives in the literature. 

1   Introduction 

Representing and reasoning about events and their effects is essential in modeling the 
dynamic aspects of the world. Over the past 40 decades, a multitude of alternative 
formalisms have been proposed in this area, including McCarthy and Hayes’ 
framework of the situation calculus [17, 18], McDermott’s temporal logic [19], 
Allen’s interval based theory [1, 2], Kowalski and Sergot’s event calculus [11], 
Shoham’s point-based reified logic and theory [26, 27], and Terenziani and Torasso’s 
theory of causation [28]. In particularly, noticing that temporal reasoning plays an 
important role in reasoning about actions/events and change, a series of revised 
formalisms have been introduced to characterize richer temporal features in the 
situation calculus or the event calculus, such that of  Lifschitz [12], of Sandewall 
[23], of Schubert [24], of Gelfond et al. [10], of Lin and Shoham [13], of Pinto and 
Reither [21, 22], of Miller and Shanahan [20, 25], and of Baral et al. [5, 6, 7].  

In most existing formalisms for representing causal relationships between events 
and their effects, such as the situation calculus and the event calculus, the result of an 
event is represented by the effect takes place immediately after the occurrence of the 
event. However, as noted by Allen and Ferguson [3], temporal relationships between 
events and their effects can in fact be quite complicated. In some cases, the effects of 
an event take place immediately after the end of the event and remain true until some 
further events occur. E.g., in the block-world, as soon as the action “moving a block 
from the top of another block onto the table” is completed, the block being moved 
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should be on the table (immediately). However, sometimes there may be a time delay 
between an event and its effect(s). E.g., 30 seconds after you press the button at the 
crosswalk, the pedestrian light turns to green [10]. Also, in some other cases, the 
effects of an event might start to hold while the event is in progress, and stop holding 
before or after the end of the event. Examples can be found later in the paper. 

The objective of this paper is to propose a framework, which allows expression of 
versatile temporal causal relationships between events and their effects. As the 
temporal basis for the formalism, a simple point-based time model is presented in 
section 2, allowing expression of both absolute time values and relative temporal 
relations. In section 3, fluents and states are associated with times in the manner of 
temporal reification [16, 26]. Section 4 deals with representation of event/action and 
change, as well as temporal constraints on the causal relationships between events 
and their effects. Finally, section 5 concludes the paper. 

2 A Simple Time Model 

In what follows in this paper, we shall use R to denote the set of real numbers, and T, 
the set of time elements. Each time element t is defined as a subset of R and must be 
in one of the following four forms: 

(p1, p2) = {p | p∈R ∧ p1 < p < p2} 
[p1, p2) = {p | p∈R ∧ p1 ≤ p < p2} 
(p1, p2] = {p | p∈R ∧ p1 < p ≤ p2} 
[p1, p2] = {p | p∈R ∧ p1 ≤ p ≤ p2} 

In the above, p1 and p2 are real numbers, and we shall call them the left-bound and 
right-bound of time element t, respectively. The absolute values as for the left and/or 
right bounds of some time elements might be unknown. In this case, real number 
variables are used for expressing relative relations to other time elements. 

In this paper, if the left-bound and right-bound of time element t are the same, we 
shall call t a time point, otherwise t is called a time interval. Without confusion, we 
shall take time element [p, p] as identical to p. Also, if a time element is not specified 
as open or closed at its left (right) bound, we shall use “<” instead of “(” and “[” as 
for its left bracket; similarly, we shall use “>” instead of “)” and “]” as for its right 
bracket. In addition, we define the duration of a time element t, Dur(t), as the distance 
between its left bound and right bound. In other words: 

(2.1) t = <p1, p2> ⇒ Dur(t) = p2 – p1 

Following Allen’s terminology [1], we shall use Meets to denote the immediate 
predecessor order relation over time elements: 

(2.2) Meets(t1, t2) ⇔ ∃p1,p,p2∈R(t1 = <p1, p) ∧ t2 = [p, p2> ∨ t1 = <p1, p] ∧ t2 = (p, p2>) 

It is easy to see that the intuitive meaning of Meets(t1, t2) is that, on the one hand,  
time elements t1 and t2 don’t overlap each other (i.e., they don’t have any part in 
common, not even a point); on the other hand, there is not any other time element 
standing between them. 
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N.B. For any two time elements t1 and t2 such that Meets(t1, t2), t1 and t2 define a 
unique time element as the “ordered-union”  of t1 and t2, denoted as t1⊕t2. 

Analogous to the 13 exclusive relations introduced by Allen for intervals [1, 2], in 
this paper, we shall use TR to denote the set of exclusive temporal order relations over 
time elements including both time points and time intervals: 

TR = {Equal, Before, After, Meets, Overlaps, Overlapped-by, Met-by, 
Starts, Started-by, During, Contains, Finishes, Finished-by} 

It is important to note that, for a given pair of time elements, some of the relations in 
TR may be non-applicable. In fact, when the pair of time elements, t1 and t2, are 
specified as a point and a point, a point and an interval, an interval and a point, and an 
interval and an interval, respectively, all the exclusive temporal order relations 
between t1 and t2 can be classified into the following four groups, which we shall call 
the Comprehensive Temporal Order Relations (CTOR): 

• 3 relations relating a point to a point: 
{Equal, Before, After} 

• 7 relations relating a point to an interval: 
{Before, After, Meets, Met-by, Starts, During. Finishes} 

• 7 relations relating an interval to a point: 
{Before, After, Meets, Met-by, Started-y, Contains, Finished-by} 

• 13 relations relating an interval to an interval: 
{Equal, Before, After, Meets, Met-by, Overlaps, Overlapped-by, Starts, 
  Started-by, During, Contains, Finishes, Finished-by} 

The definition of the derived temporal order relations in terms of the single relation Meets 
is straightforward [4]. In fact: 

 Equal(t1, t2) ⇔ ∃t’,t’’∈T(Meets(t’, t1) ∧ Meets(t’, t2) ∧ Meets(t1, t’’) ∧ Meets(t2, t’’)) 
 Before(t1, t2) ⇔ ∃t∈T(Meets(t1, t) ∧ Meets(t, t2)) 
 Overlaps(t1, t2) ⇔ ∃t,t3,t4∈T(t1 = t3 ⊕ t ∧ t2 = t ⊕ t4) 
 Starts(t1, t2) ⇔ ∃t∈T(t2 = t1 ⊕ t) 
 During(t1, t2) ⇔ ∃t3,t4∈T(t2 = t3 ⊕ t1 ⊕ t4) 
 Finishes(t1, t2) ⇔ ∃t∈T(t2 = t ⊕ t1) 
 After(t1, t2) ⇔ Before(t2, t1) 
 Overlapped-by(t1,t2) ⇔ Overlaps(t2, t1) 
 Started-by(t1, t2) ⇔ Starts(t2, t1) 
 Contains(t1, t2) ⇔ During(t2, t1) 
 Finished-by(t1,t2) ⇔ Finishes(t2,t1), 
 Met-by(t1,t2) ⇔ Meets(t2,t1) 

For the convenience of expression, we define two non-exclusive temporal relations as 
below: 

 In(t1, t2) ⇔ Starts(t1, t2) ∨ During(t1, t2) ∨ Finishes(t1, t2) 
 Sub(t1, t2) ⇔ Equal(t1, t2) ∨ In(t1, t2) 

Another important fact needs to be pointed out is that the distinction between the 
assertion that “point p Meets interval t” and the assertion that “point p Starts interval t” is 
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critical: while Starts(p, t) states that point p is the starting part of interval t, Meets(p, t) 
states that point p is one of the immediate predecessors of interval t but p is not a part of t 
at all. In other words, Starts(p, t) implies interval t is left-closed at point p, and Meets(p, t) 
implies interval t is left-open at point p. Similarly, this applies to the distinction between 
the assertion that “interval t is Finished-by point p” and the assertion that “interval t is 
Met-by point p”, i.e., Finished-by(t, p) implies interval t is right-closed at point p, and 
Met-by(t, p) implies interval t is right-open at point p. 

As mentioned earlier, the simple point-based time model introduced here allows the 
openness (or closeness) of some interval at their left and/or right bounds to be 
unspecified. Such an approach provides a satisfactory representation of possibly 
incomplete relative temporal knowledge, and hence retains the appealing characteristics 
of interval-based [1], and point&interval-based [15] temporal systems. Specially, it can 
successfully bypass puzzles like the so-called Dividing Instant Problem [1, 8, 9, 14, 29]. 

3 Fluents and States 

Representing the dynamic aspects of the world usually involves reasoning about 
various states of the world under consideration. In this paper, we shall define a state 
(denoted by, possibly scripted, s) of the world in the discourse as a collection of 
fluents (denoted by, possibly scripted, f), where a fluent is simply a Boolean valued 
proposition whose truth-value is dependent on the time.  

The set of fluents, F, is defined as the minimal set closed under the following two 
rules: 

(3.1) f1, f2∈F ⇒ f1∨ f2∈F 
(3.2) f∈F ⇒ not(f)∈F 

In order to associate a fluent with a time element, we shall use Holds(f, t) to denote 
that fluent f holds true over time t. 

As pointed out by Allen and Ferguson [3], as well as by Shoham [26], there are 
two ways we might interpret the negative sentence. In what follows, the sentence-
negation will be symbolized “¬”, e.g., ¬Holds(t, f), distinguished from the negation of 
fluents, e.g., not(f) [9]. In the weak interpretation, ¬Holds(t, f) is true if and only if it 
is not the case that f is true throughout t, and hence ¬Holds(t, f) is true if f changes 
truth-values over time t. In the strong interpretation of negation, ¬Holds(t, f) is true if 
and only if f holds false throughout t, so neither Holds(t, f) nor ¬Holds(t, f) would be 
true in the case that fluent f is true over some sub-interval of t and also false over 
some other sub-interval of t. 

 In this paper, we take the weak interpretation of negation as the basic construct: 

(3.3) Holds(f, t) ⇒ ∀t’(Sub(t’, t) ⇒ Holds(f, t’)) 

That is, if fluent f holds true over a time element t, then f holds true over any part of t. 

(3.4) Holds(f1∨ f2, t) ⇔ Holds(f1, t) ∨ Holds(f2, t) 

That is, if fluent f1 or fluent f2 holds true over time t, then at least one of them holds 
true over time t. 
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(3.5) Holds(f, t1) ∧ Holds(f, t2) ∧ Meets(t1, t2) ⇒ Holds(f, t1⊕t2) 

That is, if fluent f holds true over two time elements t1 and t2 that meets each other, 
then f holds over the ordered-union of t1 and t2. 

Following the approach proposed in [25], we use Belongs(f, s) to denote that 
fluent f belongs to the collection of fluents representing state s: 

(3.6) s1 = s2 ⇔ ∀f(Belongs(f, s1) ⇔ Belongs(f, s2)) 

That is, two states are equal if and only if they contain the same fluents. 

(3.7) ∃s∀f(¬Belongs(f, s)) 

That is, there exists a state that is an empty set. 

(3.8) ∀s1f1∃s2(∀f2(Belongs(f2, s2) ⇔ Belongs(f2, s1) ∨ f1 = f2)) 

That is, any fluent can be added to an existing state to form a new state. 
Without confusion, we also use Holds(s, t) to denote that state s holds true over 

time t, provided: 

(3.9) Holds(s, t) ⇔ ∀f(Belongs(f, s) ⇒ Holds(f, t)) 

4 Events, Effects and Causal Relationships 

The concepts of change and time are deeply related since changes are caused by 
events occurring over the time. In order to express the occurrence of events (denoted 
by e, possibly scripted), following Allen’s approach [2], we use Occur(e, t) to denote 
that event e occurs over time t, and impose the following axiom: 

(4.1) Occur(e, t) ⇒ ∀t’(In(t’, t) ⇒ ¬Occur(e, t’)) 

We shall use formula Changes(t1, t, t2, s1, e, s2) to denote a causal law, which 
intuitively states that, under the precondition that state s1 hold over time t1, the 
occurrence of event e over time t will change the world from state s1 into state s2, 
which holds over time t2. Formally, we impose the following axiom about causality to 
ensure that if the precondition of a causal law holds and the event happens, then the 
effect expected to be caused must appear: 

(4.2) Changes(t1, t, t2, s1, e, s2) ∧ Holds(s1, t1) ∧ Occur(e, t) ⇒ Holds(s2, t2) 

In order to characterize temporal relationships between events and their effects, we 
impose the following temporal constraints: 

(4.3) Changes(t1, t, t2, s1, e, s2)  ⇒ Meets(t1, t) ∧ (Meets(t1, t2) ∨ Before(t1, t2)) 

It is important to note that axiom (4.3) presented above actually specifies the so-
called (most) general temporal constraint (GTC) (see [2, 19, 27, 28]). Such a GTC 
guarantees the common-sense assertion that “the beginning of the effect cannot 
precede the beginning of the cause”. 

There are in fact 8 possible temporal order relations between times t1, t and t2 
which satisfy (4.3). These are illustrated in Figure 1 as below: 
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Figure 1. Temporal order relations between times t1, t and t2 which satisfy (4.3). 

• Case (A) where the effect becomes true immediately after the end of the event and 
remains true for some time after the event. E.g., the event of putting a book on the 
table has the effect that the book is on the table immediately after the event is 
completed. 

• Case (B) where the effect holds only over the same time over which the event is in 
progress. E.g., as the effect of the event of pressing the horn of a car, the horn 
makes sounds only when the horn is being pressed. 

• Case (C) where the beginning of the effect coincides with the beginning of the 
event, and the effect ends before the event completes. E.g., consider the case 
where a landmine is set on the first half of a bridge. If someone is walking 
through the bridge, he will be in danger just over the first half of the bridge 
crossing. 

• Case (D) where the beginning of the effect coincides with the beginning of the 
event, and the effect remains true for some time after the event. E.g., as the effect 
of the event of pressing the button of the bell on the door (say, for one second), 
the bell sounds a tune for fifteen seconds. 

• Case (E) where the effect only holds over some time during the progress of the 
event. E.g., he goes through a wall of tiredness over the fiftieth minute of the 
event of running for four hours. 

• Case (F) where the effect becomes true during the progress of the event and 
remains true until the event completes. E.g., consider the event of discharging 
some water from a basket by means of lifting one side of the basket. In the case 
where the basket is not full, the effect that the water flows out takes place only 
after it has been lifted to the edge of the basket, and will keep flowing out until the 
event ends. 

• Case (G) where the effect becomes true during the progress of the event and 
remains true for some time after the event. E.g., he becomes tired for days after 
the thirtieth minute of the event of running along the track for three hours. 
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• Case (H) where there is a time delay between the event and its effect. E.G., 25 
seconds after the button at the crosswalk is pressed, the pedestrian light turns to 
yellow; and after another 5 seconds, it turns to green. 

As mentioned in the introduction, various theories have been proposed for 
representing and reasoning about action/event and change. However, the temporal 
causal relationships between events and their effects as specified in most of the 
existing formalism are quite limited. An exception is the relatively general theory of 
Time, Action-Types, and Causation, introduced by Terenziani and Torasso’s in the 
middle of last 90s [28]. Due to the limit to the length of the paper, in what follows, we 
shall briefly demonstrate that the causal relationships characterized in this paper are 
more general than that of Terenziani and Torasso, and therefore versatile enough to 
subsume those representatives in the literature. In fact: 

If t and t2 are specified as a point and a point, a point and an interval, an interval 
and a point, and an interval and an interval, respectively, by applying the CTOR as 
classified in section 2, we can reach the following four theorems straightforwardly: 

(Th1) Changes(t1, t, t2, s1, e, s2) ∧ Dur(t) = 0 ∧ Dur(t2) = 0 
⇒  Equal(t, t2) ∨ Before(t, t2) 

That is, if the event and the effect are both punctual, then either the event precedes 
(strictly) the effect, or they coincide with each other (i.e., they happens 
simultaneously at the same time point). 

(Th2) Changes(t1, t, t2, s1, e, s2) ∧ Dur(t) = 0 ∧ Dur(t2) >0 
⇒  Starts(t, t2) ∨ Meets(t, t2) ∨ Before(t, t2) 

That is, if the event is punctual and the effect is durative, then either the event 
precedes (immediately or strictly) the effect, or the event coincides with the 
beginning of the effect. 

(Th3) Changes(t1, t, t2, s1, e, s2) ∧ Dur(t) > 0 ∧ Dur(t2) = 0 
⇒     Started-by(t, t2) ∨ Contains(t, t2)  

∨ Finished-by(t, t2) ∨ Meets(t, t2) ∨ Before(t, t2) 

That is, if the event is durative and the effect is punctual, then either the event 
precedes (immediately or strictly) the effect, or the effect coincides with either the 
beginning or the end of the event, or the effect happens during the event’s 
occurrence. 

(Th4) Changes(t1, t, t2, s1, e, s2) ∧ Dur(t) > 0 ∧ Dur(t2) > 0 
⇒     Started-by(t, t2) ∨ Contains(t, t2) ∨ Finished-by(t, t2) ∨ Equal(t, t2) 

∨ Starts(t, t2) ∨ Overlaps(t, t2) ∨ Meets(t, t2) ∨ Before(t, t2) 

That is, if both the event and the effect are durative, then the beginning of the event 
either precedes (immediately or strictly) or coincides with the beginning of the effect, 
where the end of the event can either precedes (immediately or strictly), coincides 
with, or succeeds (immediately or strictly) the end of the effect. 

It is easy to see that (Th1) and (Th4) are equivalent to Terenziani and Torasso’s 
Theorem 4 (p.541, [28]) and Theorem 1 (p.540, [28]), respectively, while (Th2) and 
(Th3) can be seen as the extension to Terenziani and Torasso’s Theorem 3 and 
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Theorem 2 (p.541, [28]), respectively. This is due to the fact that, while the “Meets” 
relation between a punctual event and a durative effect, and between a durative event 
and a punctual effect, is accommodated in (Th2) and (Th3), respectively,  Terenziani 
and Torasso’s Theorem 3 and Theorem 2 do not allow such relations. 
  In fact, follow Terenziani and Torasso’s Theorem 3, either there must be a gap 
between the punctual cause and its durative effect, or the punctual cause must 
coincide with the beginning part of its durative effect. In other words, the interval 
over which the effect happens must be either “After” or “closed at” the point at which 
the cause happens. Therefore, the case where a punctual cause “Meets” its durative 
effect (that is, the interval over which the effect happens is “open” at the point at 
which the cause happens) is not allowable. However, consider the following example: 

Immediately after the power was switched on, a robot that had been stationary 
started moving. 

If we use sStationary to represent the state that “the robot was stationary, eSwitchOn to 
represent the event that “the power was switched on”, and sMoving to represent the 
corresponding effect that “the robot was moving”, then 

Changes(tStationary, tSwitchOn, tMoving, sStationary, eSwitchOn, sMoving) 

should be consistent with: 

Meets(tSwitchOn, tMoving) 

That is, the “Switching” point tSwitchOn is immediately followed by the “Moving” 
interval, but not included in the “Moving” interval itself. In other word, the robot was 
moving immediately after the “Switching” point tSwitchOn, but at the time point when 
the power was switching on, the robot was not moving. Obviously, such a scenario 
cannot be expressed in Terenziani and Torasso’s Theorem 3. 

Similarly, in Terenziani and Torasso’s Theorem 2, the case where a durative event 
“Meets” its punctual effect (that is, the interval over which the cause happens is 
“open” at the point at which the effect happens) is not allowable. Then again, 
consider the following example: 

Immediately after the ball being falling down from the air, it touched the ground. 
If we use sInAir to represent the precondition that “the ball was at a certain position in 
the air”, eFallingDown to represent the event that “the ball was falling down”, and 
sTouchGround to represent effect that “the ball touched the ground”, respectively, then 

Changes(tInAir, tFallingDown, tTouchGround, sInAir, eFallingDown, sTouchGround) 

should be consistent with: 

Meets(tFallingDown, tTouchGround) 

That is, the interval over which the ball was falling down is immediately followed by 
the point when the ball touched the ground, but does not include the point itself. In 
other word, the ball was falling down immediately before the instant when it touched 
the group, but at the time point when the ball touched the ground, the ball was no 
longer falling down. Again, such a scenario is not allowed in Terenziani and 
Torasso’s Theorem 2. 

22     Jixin Ma, Knight B. and  Petridis M.



 

5 Conclusions 

Based on a simple point-based time model which allows expression of both absolute 
time values and relative temporal relations, we have presented in this paper a 
framework for representing flexible temporal causal relationships. The formalism 
presented here formally specifies the most general temporal constraint (GTC), 
ensuring the common-sense assertion that “the beginning of the effect cannot precede 
the beginning of the cause”. It is shown that the causal relationships characterized here 
are versatile enough to subsume those representatives in the literature. Ideally, any 
useful theory about action/event and change has to be able to handle the frame 
problem adequately. However, due to the length of this paper, we didn’t tackle such a 
problem. An interesting topic for further research is to extend this framework to 
include representing and reasoning about concurrent actions/events and their effects. 
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