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Abstract. This paper introduces a framework for representing versatile
temporal relationships between events and their effects. The framework is
based on a simple time model which characterizes each time eclement as a
subset of the set of real numbers and allows expression of both absolute time
values and relative temporal relations. The formalism presented here formally
specifies the so-called most general temporal constraint (GTC), which
guarantees the common-sense assertion that “the beginning of the effect cannot
precede the beginning of the cause”. It is shown that there are in fact 8 possible
causal relationships which satisfy GTC, including cases where, on the one
hand, effects start simultaneously with, during, immediately after, or some time
after their causes, and on the other hand, events end before, simultaneously
with, or after their causes. The causal relationships characterized in this paper
are versatile enough to subsume those representatives in the literature.

1 Introduction

Representing and reasoning about events and their effects is essential in modeling the
dynamic aspects of the world. Over the past 40 decades, a multitude of alternative
formalisms have been proposed in this area, including McCarthy and Hayes’
framework of the situation calculus [17, 18], McDermott’s temporal logic [19],
Allen’s interval based theory [1, 2], Kowalski and Sergot’s event calculus [11],
Shoham’s point-based reified logic and theory [26, 27], and Terenziani and Torasso’s
theory of causation [28]. In particularly, noticing that temporal reasoning plays an
important role in reasoning about actions/events and change, a series of revised
formalisms have been introduced to characterize richer temporal features in the
situation calculus or the event calculus, such that of Lifschitz [12], of Sandewall
[23], of Schubert [24], of Gelfond et al. [10], of Lin and Shoham [13], of Pinto and
Reither [21, 22], of Miller and Shanahan [20, 25], and of Baral et al. [5, 6, 7].

In most existing formalisms for representing causal relationships between events
and their effects, such as the situation calculus and the event calculus, the result of an
event is represented by the effect takes place immediately after the occurrence of the
event. However, as noted by Allen and Ferguson [3], temporal relationships between
events and their effects can in fact be quite complicated. In some cases, the effects of
an event take place immediately after the end of the event and remain true until some
further events occur. E.g., in the block-world, as soon as the action “moving a block
from the top of another block onto the table” is completed, the block being moved
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should be on the table (immediately). However, sometimes there may be a time delay
between an event and its effect(s). E.g., 30 seconds after you press the button at the
crosswalk, the pedestrian light turns to green [10]. Also, in some other cases, the
effects of an event might start to hold while the event is in progress, and stop holding
before or after the end of the event. Examples can be found later in the paper.

The objective of this paper is to propose a framework, which allows expression of
versatile temporal causal relationships between events and their effects. As the
temporal basis for the formalism, a simple point-based time model is presented in
section 2, allowing expression of both absolute time values and relative temporal
relations. In section 3, fluents and states are associated with times in the manner of
temporal reification [16, 26]. Section 4 deals with representation of event/action and
change, as well as temporal constraints on the causal relationships between events
and their effects. Finally, section 5 concludes the paper.

2 A Simple Time Model

In what follows in this paper, we shall use R to denote the set of real numbers, and T,
the set of time elements. Each time element t is defined as a subset of R and must be
in one of the following four forms:

(P1, p2) = {p | peERAPI <p <p2}
[P, p2) =PI PERADPI <P <py}
(P, p2] = {p | peRAPI <p <py}
[P, p2] = ip | PER AP < p <y}

In the above, p; and p, are real numbers, and we shall call them the left-bound and
right-bound of time element t, respectively. The absolute values as for the left and/or
right bounds of some time elements might be unknown. In this case, real number
variables are used for expressing relative relations to other time elements.

In this paper, if the left-bound and right-bound of time element t are the same, we
shall call t a time point, otherwise t is called a time interval. Without confusion, we
shall take time element [p, p] as identical to p. Also, if a time element is not specified
as open or closed at its left (right) bound, we shall use “<” instead of “(” and “[” as
for its left bracket; similarly, we shall use “>" instead of “)” and “]” as for its right
bracket. In addition, we define the duration of a time element t, Dur(t), as the distance
between its left bound and right bound. In other words:

(2.1) t=<py, p>> = Dur(t) = p, - p,

Following Allen’s terminology [1], we shall use Meets to denote the immediate
predecessor order relation over time elements:

(2.2) Meets(t;, t) <> Ipi,p.p2€R(t = <p1, p) A, = [P, p2> Vv 1y = <py1, p] A &, = (D, P2>)

It is easy to see that the intuitive meaning of Meets(t;, t;) is that, on the one hand,
time elements t; and t, don’t overlap each other (i.e., they don’t have any part in
common, not even a point); on the other hand, there is not any other time element
standing between them.
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N.B. For any two time elements t; and t, such that Meets(t,, t,), t; and t, define a
unique time element as the “ordered-union” oft; and t,, denoted as t;®t,.

Analogous to the 13 exclusive relations introduced by Allen for intervals [1, 2], in
this paper, we shall use TR to denote the set of exclusive temporal order relations over
time elements including both time points and time intervals:

TR = {Equal, Before, After, Meets, Overlaps, Overlapped-by, Met-by,
Starts, Started-by, During, Contains, Finishes, Finished-by}

It is important to note that, for a given pair of time elements, some of the relations in
TR may be non-applicable. In fact, when the pair of time elements, t; and t,, are
specified as a point and a point, a point and an interval, an interval and a point, and an
interval and an interval, respectively, all the exclusive temporal order relations
between t; and t, can be classified into the following four groups, which we shall call
the Comprehensive Temporal Order Relations (CTOR):

e 3 relations relating a point to a point:
{Equal, Before, After}
e 7 relations relating a point to an interval:
{Before, After, Meets, Met-by, Starts, During. Finishes}
e 7 relations relating an interval to a point:
{Before, After, Meets, Met-by, Started-y, Contains, Finished-by}
e 13 relations relating an interval to an interval:
{Equal, Before, After, Meets, Met-by, Overlaps, Overlapped-by, Starts,
Started-by, During, Contains, Finishes, Finished-by}

The definition of the derived temporal order relations in terms of the single relation Meets
is straightforward [4]. In fact:

Equal(t;, t) < 3t e T(Meets(t’, t;) A Meets(t’, t,) A Meets(t;, t”’) A Meets(t, t”))
Before(ty, t,) < Fte T(Meets(t;, t) A Meets(t, t,))
Overlaps(tl, tz) = 3t,t3,t4€ T(tl =13 Dt L=t @ t4)
Starts(t], t2) & dte T(tz =1 @ t)

During(tl, tz) = Elt3,t4€T(t2 =13 @ t @ t4)
Finishes(t;, ) < teT(L, =t D 1))

After(t;, ;) < Before(t,, t;)

Overlapped-by(t;,t;) < Overlaps(t,, t;)
Started-by(t, t,) < Starts(t, t;)

Contains(t;, t,) <> During(ty, t;)

Finished-by(t,,t;) < Finishes(t,,t;),

Met-by(t;,t;) <> Meets(ty,t))

For the convenience of expression, we define two non-exclusive temporal relations as
below:

In(t;, t,) < Starts(t,, t,) v During(t,, t,) v Finishes(t,, t)
Sub(t, t,) < Equal(t;, tp) v In(ty, tp)

Another important fact needs to be pointed out is that the distinction between the
assertion that “point p Meets interval t” and the assertion that “point p Starts interval t” is
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critical: while Starts(p, t) states that point pis the starting part of interval t, Meets(p, t)
states that point p is one of the immediate predecessors of interval t but p is not a part of t
at all. In other words, Starts(p, t) implies interval t is left-closed at point p, and Meets(p, t)
implies interval t is left-open at point p. Similarly, this applies to the distinction between
the assertion that “interval tis Finished-by point p” and the assertion that “interval tis
Met-by point p”, i.e., Finished-by(t, p) implies interval t is right-closed at point p, and
Met-by(t, p) implies interval t is right-open at point p.

As mentioned earlier, the simple point-based time model introduced here allows the
openness (or closeness) of some interval at their left and/or right bounds to be
unspecified. Such an approach provides a satisfactory representation of possibly
incomplete relative temporal knowledge, and hence retains the appealing characteristics
of interval-based [1], and point&interval-based [15] temporal systems. Specially, it can
successfully bypass puzzles like the so-called Dividing Instant Problem [1, 8, 9, 14, 29].

3  Fluents and States

Representing the dynamic aspects of the world usually involves reasoning about
various states of the world under consideration. In this paper, we shall define a state
(denoted by, possibly scripted, s) of the world in the discourse as a collection of
fluents (denoted by, possibly scripted, f), where a fluent is simply a Boolean valued
proposition whose truth-value is dependent on the time.

The set of fluents, F, is defined as the minimal set closed under the following two
rules:

(31) flo f2€F = f]V fzeF
(3.2) feF = not(f)eF

In order to associate a fluent with a time element, we shall use Holds(f, t) to denote
that fluent f holds true over time t.

As pointed out by Allen and Ferguson [3], as well as by Shoham [26], there are
two ways we might interpret the negative sentence. In what follows, the sentence-
negation will be symbolized “—”, e.g., “Holds(t, f), distinguished from the negation of
fluents, e.g., not(f) [9]. In the weak interpretation, “Holds(t, f) is true if and only if it
is not the case that f is true throughout t, and hence —~Holds(t, f) is true if f changes
truth-values over time t. In the strong interpretation of negation, “Holds(t, f) is true if
and only if f holds false throughout t, so neither Holds(t, f) nor “Holds(t, f) would be
true in the case that fluent f is true over some sub-interval of t and also false over
some other sub-interval of't.

In this paper, we take the weak interpretation of negation as the basic construct:

(3.3) Holds(f, t) = Vt’(Sub(t’, t) = Holds(f, t"))
That is, if fluent f holds true over a time element t, then f holds true over any part of't.
(3.4) Holds(fyv 5, t) <> Holds(f}, t) v Holds(f, t)

That is, if fluent f; or fluent f, holds true over time t, then at least one of them holds
true over time t.
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(3.5) Holds(f, t;) A Holds(f, t,) A Meets(t;, t,) = Holds(f, t;®t,)

That is, if fluent f holds true over two time elements t; and t, that meets each other,
then f holds over the ordered-union of t; and t,.

Following the approach proposed in [25], we use Belongs(f, s) to denote that
fluent f belongs to the collection of fluents representing state s:

(3.6) s = s, < V{(Belongs(f, s;) < Belongs(f, s,))

That is, two states are equal if and only if they contain the same fluents.
(3.7) IsVf(—Belongs(f, s))

That is, there exists a state that is an empty set.

(3.8) Vs f13s, (V1 (Belongs(f,, s;) < Belongs(f,, 1) v {1 =1,))

That is, any fluent can be added to an existing state to form a new state.
Without confusion, we also use Holds(s, t) to denote that state s holds true over
time t, provided:

(3.9) Holds(s, t) < V{(Belongs(f, s) = Holds(f, t))

4 Events, Effects and Causal Relationships

The concepts of change and time are deeply related since changes are caused by
events occurring over the time. In order to express the occurrence of events (denoted
by e, possibly scripted), following Allen’s approach [2], we use Occur(e, t) to denote
that event e occurs over time t, and impose the following axiom:

(4.1) Occur(e, t) = Vt’(In(t’, t) = —Occur(e, t’))

We shall use formula Changes(t;, t, t,, s, €, s;) to denote a causal law, which
intuitively states that, under the precondition that state s; hold over time t;, the
occurrence of event e over time t will change the world from state s; into state s,,
which holds over time t,. Formally, we impose the following axiom about causality to
ensure that if the precondition of a causal law holds and the event happens, then the
effect expected to be caused must appear:

(4.2) Changes(ty, t, t, sy, €, S2) A Holds(sy, t;) A Occur(e, t) = Holds(s,, t,)

In order to characterize temporal relationships between events and their effects, we
impose the following temporal constraints:

(4.3) Changes(t, t, t, s, €, 55) = Meets(t, t) A (Meets(t,, t,) v Before(ty, t;))

It is important to note that axiom (4.3) presented above actually specifies the so-
called (most) general temporal constraint (GTC) (see [2, 19, 27, 28]). Such a GTC
guarantees the common-sense assertion that “the beginning of the effect cannot
precede the beginning of the cause”.

There are in fact 8 possible temporal order relations between times t;, t and t,
which satisfy (4.3). These are illustrated in Figure 1 as below:
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Figure 1. Temporal order relations between times t;, t and t, which satisfy (4.3).

Case (A) where the effect becomes true immediately after the end of the event and
remains true for some time after the event. E.g., the event of putting a book on the
table has the effect that the book is on the table immediately after the event is
completed.

Case (B) where the effect holds only over the same time over which the event is in
progress. E.g., as the effect of the event of pressing the horn of a car, the horn
makes sounds only when the horn is being pressed.

Case (C) where the beginning of the effect coincides with the beginning of the
event, and the effect ends before the event completes. E.g., consider the case
where a landmine is set on the first half of a bridge. If someone is walking
through the bridge, he will be in danger just over the first half of the bridge
crossing.

Case (D) where the beginning of the effect coincides with the beginning of the
event, and the effect remains true for some time after the event. E.g., as the effect
of the event of pressing the button of the bell on the door (say, for one second),
the bell sounds a tune for fifteen seconds.

Case (E) where the effect only holds over some time during the progress of the
event. E.g., he goes through a wall of tiredness over the fiftieth minute of the
event of running for four hours.

Case (F) where the effect becomes true during the progress of the event and
remains true until the event completes. E.g., consider the event of discharging
some water from a basket by means of lifting one side of the basket. In the case
where the basket is not full, the effect that the water flows out takes place only
after it has been lifted to the edge of the basket, and will keep flowing out until the
event ends.

Case (G) where the effect becomes true during the progress of the event and
remains true for some time after the event. E.g., he becomes tired for days after
the thirtieth minute of the event of running along the track for three hours.
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e Case (H) where there is a time delay between the event and its effect. E.G., 25
seconds after the button at the crosswalk is pressed, the pedestrian light turns to
yellow; and after another 5 seconds, it turns to green.

As mentioned in the introduction, various theories have been proposed for
representing and reasoning about action/event and change. However, the temporal
causal relationships between events and their effects as specified in most of the
existing formalism are quite limited. An exception is the relatively general theory of
Time, Action-Types, and Causation, introduced by Terenziani and Torasso’s in the
middle of last 90s [28]. Due to the limit to the length of the paper, in what follows, we
shall briefly demonstrate that the causal relationships characterized in this paper are
more general than that of Terenziani and Torasso, and therefore versatile enough to
subsume those representatives in the literature. In fact:

If tand t, are specified as a point and a point, a point and an interval, an interval
and a point, and an interval and an interval, respectively, by applying the CTOR as
classified in section 2, we can reach the following four theorems straightforwardly:

(Th1) Changes(t,, t, t,, s, €, $2) A Dur(t) =0 A Dur(t,) =0
= Equal(t, t,) v Before(t, t,)

That is, if the event and the effect are both punctual, then either the event precedes
(strictly) the effect, or they coincide with each other (i.e., they happens
simultaneously at the same time point).

(Th2) Changes(ty, t, t, s1, €, S) A Dur(t) = 0 A Dur(ty) >0
= Starts(t, t) v Meets(t, t,) v Before(t, t,)

That is, if the event is punctual and the effect is durative, then either the event
precedes (immediately or strictly) the effect, or the event coincides with the
beginning of the effect.

(Th3) Changes(ty, t, t,, sy, €, S2) A Dur(t) > 0 A Dur(t;) =0
= Started-by(t, t,) v Contains(t, t)
v Finished-by(t, t,) v Meets(t, t,) v Before(t, t,)

That is, if the event is durative and the effect is punctual, then either the event
precedes (immediately or strictly) the effect, or the effect coincides with either the
beginning or the end of the event, or the effect happens during the event’s
occurrence.

(Th4) Changes(t,, t, t,, s, €, $3) A Dur(t) > 0 A Dur(t,) > 0
= Started-by(t, t,) v Contains(t, t,) v Finished-by(t, t,) v Equal(t, t,)
v Starts(t, t,) v Overlaps(t, t;) v Meets(t, t;) v Before(t, t,)

That is, if both the event and the effect are durative, then the beginning of the event
either precedes (immediately or strictly) or coincides with the beginning of the effect,
where the end of the event can either precedes (immediately or strictly), coincides
with, or succeeds (immediately or strictly) the end of the effect.

It is easy to see that (Thl) and (Th4) are equivalent to Terenziani and Torasso’s
Theorem 4 (p.541, [28]) and Theorem 1 (p.540, [28]), respectively, while (Th2) and
(Th3) can be seen as the extension to Terenziani and Torasso’s Theorem 3 and
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Theorem 2 (p.541, [28]), respectively. This is due to the fact that, while the “Meets”
relation between a punctual event and a durative effect, and between a durative event
and a punctual effect, is accommodated in (Th2) and (Th3), respectively, Terenziani
and Torasso’s Theorem 3 and Theorem 2 do not allow such relations.

In fact, follow Terenziani and Torasso’s Theorem 3, either there must be a gap
between the punctual cause and its durative effect, or the punctual cause must
coincide with the beginning part of its durative effect. In other words, the interval
over which the effect happens must be either “After” or “closed at” the point at which
the cause happens. Therefore, the case where a punctual cause “Meets” its durative
effect (that is, the interval over which the effect happens is “open” at the point at
which the cause happens) is not allowable. However, consider the following example:

Immediately after the power was switched on, a robot that had been stationary

started moving.

If we use Ssuionary tO represent the state that “the robot was stationary, €swiwchon tO
represent the event that “the power was switched on”, and Syovin, to represent the
corresponding effect that “the robot was moving”, then

Changes(tStationary; tSwitchOns tMoving3 SStationarys €SwitchOn» SMoving)

should be consistent with:

Meets(tSwitchOm tMoving)

That is, the “Switching” point tsyichon 1s immediately followed by the “Moving”
interval, but not included in the “Moving” interval itself. In other word, the robot was
moving immediately after the “Switching” point tsyichon, but at the time point when
the power was switching on, the robot was not moving. Obviously, such a scenario
cannot be expressed in Terenziani and Torasso’s Theorem 3.

Similarly, in Terenziani and Torasso’s Theorem 2, the case where a durative event
“Meets” its punctual effect (that is, the interval over which the cause happens is
“open” at the point at which the effect happens) is not allowable. Then again,
consider the following example:

Immediately after the ball being falling down from the air, it touched the ground.
If we use spair to represent the precondition that “the ball was at a certain position in
the air”, epaningpown t0 represent the event that “the ball was falling down”, and
STouchGround tO represent effect that “the ball touched the ground”, respectively, then

Changes(tInAira tFallingDowna tTouchGrounda SInAirs eFallingDown; STouchGround)

should be consistent with:

Meets (tF allingDown» tTouchGround)

That is, the interval over which the ball was falling down is immediately followed by
the point when the ball touched the ground, but does not include the point itself. In
other word, the ball was falling down immediately before the instant when it touched
the group, but at the time point when the ball touched the ground, the ball was no
longer falling down. Again, such a scenario is not allowed in Terenziani and
Torasso’s Theorem 2.
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5 Conclusions

Based on a simple point-based time model which allows expression of both absolute
time values and relative temporal relations, we have presented in this paper a
framework for representing flexible temporal causal relationships. The formalism
presented here formally specifies the most general temporal constraint (GTC),
ensuring the common-sense assertion that “the beginning of the effect cannot precede
the beginning of the cause”. It is shown that the causal relationships characterized here
are versatile enough to subsume those representatives in the literature. Ideally, any
useful theory about action/event and change has to be able to handle the frame
problem adequately. However, due to the length of this paper, we didn’t tackle such a
problem. An interesting topic for further research is to extend this framework to
include representing and reasoning about concurrent actions/events and their effects.
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